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Testing for pairwise serial independence via the 
empirical distribution function 

Yongmiao Hongt 
Cornell University, Ithaca, USA 

[Received July 1996. Revised May 1997] 

Summary. Built on Skaug and Tj0stheim's approach, this paper proposes a new test for serial 
independence by comparing the pairwise empirical distribution functions of a time series with 
the products of its marginals for various lags, where the number of lags increases with the 
sample size and different lags are assigned different weights. Typically, the more recent information 
receives a larger weight. The test has some appealing attributes. It is consistent against all pair- 
wise dependences and is powerful against alternatives whose dependence decays to zero as 
the lag increases. Although the test statistic is a weighted sum of degenerate Cram6r-von Mises 
statistics, it has a null asymptotic N(O, 1) distribution. The test statistic and its limit distribution are 
invariant to any order preserving transformation. The test applies to time series whose distribu- 
tions can be discrete or continuous, with possibly infinite moments. Finally, the test statistic only 
involves ranking the observations and is computationally simple. It has the advantage of avoiding 
smoothed nonparametric estimation. A simulation experiment is conducted to study the finite 
sample performance of the proposed test in comparison with some related tests. 

Keywords: Asymptotic normality; Cram6r-von Mises statistic; Empirical diitribution function; 
Hypothesis testing; Serial independence; Weighting 

1. Introduction 

The detection of serial dependence is important for non-Gaussian and non-linear time series. 
Tests for serial independence are useful diagnostic tools in fitting non-linear time series and 
identifying appropriate lags, especially when the time series has zero autocorrelation (see 
Granger and Terasvirta (1993)). For instance, to detect non-linearity we can test whether the 
residuals from a linear fit are independent. We can also test the random walk hypothesis for a 
time series by testing whether its first differences are serially independent. Tests for independence 
are useful in other contexts as well (see Robinson (1991 a)). Independence is still a testable 
hypothesis in populations with infinite second-order moments. 

In practice, correlation tests (e.g. Box and Pierce (1970) and Ljung and Box (1978)) are 
widely used to test serial independence, but they are not consistent against alternatives with 
zero autocorrelation. The lack of consistency is unsatisfying from both theoretical and prac- 
tical viewpoints. Also, these tests require second- or higher order moments, excluding their 
applications to time series with infinite second-order moments. 

There have been many nonparametric tests for serial independence, e.g. Chan and Tran 
(1992), Delgado (1996), Hjellvik and Tj0stheim (1996), Pinkse (1997), Robinson (1991a) and 
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430 Y. Hong 

Skaug and Tj0stheim (1993a, b, 1996). These tests are consistent against serial dependences 
up to a finite order. Some of them require smoothed nonparametric density estimation. Both 
theory and simulation studies (e.g. Skaug and Tj0stheim (1993b, 1996)) suggest that the finite 
sample performances of smoothed density-based tests may depend heavily on the choice of 
the smoothing parameters. Resampling methods such as bootstrap and permutation methods 
have been used to obtain accurate sizes (e.g. Chan and Tran (1992), Delgado (1996), Hjellvik 
and Tj0stheim (1996) and Skaug and Tj0stheim (1993b, 1996)). 

One important test that avoids smoothed nonparametric estimation is Skaug and Tj0stheim's 
(1993a) test based on the empirical distribution function, which extends the test of Blum et al. 
(1961) to a time series setting in a significant way. The test statistic is invariant to any order 
preserving transformation. The distribution generating the data can be continuous or dis- 
crete; when it is continuous, the test is distribution free. No moment is required; this is 
attractive for time series whose variances are infinite, as often arises in economics and high 
frequency financial time series (e.g. Fama and Roll (1968) and Mandelbrot (1967)). Finally, 
the statistic depends only on ranking the observations and is simple to compute. We note that 
Delgado (1996) also used the empirical distribution function via an alternative approach. 

Built on Skaug and Tj0stheim's (1993a) approach, this paper proposes a new test for serial 
independence. It compares the pairwise empirical distribution functions of a time series with 
the products of its marginals for various lags. The test has some new attributes. First, it is 
consistent against all pairwise dependences for continuous random variables. Thus, the test 
may be useful when no prior information is available. It may also be expected to have good 
power against long memory processes because a long lag is used (see Robinson (1991b)). 
Second, different weights are given to different lags; typically larger weights are given to lower 
order lags. Non-uniform weighting is expected to give better power than uniform weighting 
against alternatives whose dependence decays to zero as the lag increases, as is often observed 
for seasonally adjusted stationary time series. Third, although our statistic is a weighted sum 
of Cramer-von Mises statistics, it has a null asymptotic one-sided N(O, 1) distribution no 
matter whether the data are generated from a discrete or a continuous distribution. We 
consider some 'leave-one-out' test statistics, which improve size performances in small 
samples. We also present a slightly modified version of Skaug and Tj0stheim's (1993a) test 
that improves the size in small samples when relatively many lags are used. We emphasize 
that the new test should be viewed as not competing with but as a complement to Skaug and 
Tj0stheim's (1993a) test, because they work in different regimes and have their own merits. 
Skaug and Tj0stheim's (1993a) test is relevant when relatively few lags are tested, whereas the 
test proposed applies for relatively many lags. In addition, the present test is built on Skaug 
and Tj0stheim's (1993a) approach, and one may perform better in some situations while the 
other performs better in other situations. Simulation shows that the new test has good power 
against linear - both short and long memory - processes and some non-linear processes, but 
like other tests based on the empirical distribution functions it has relatively low power 
against Engle's (1982) autoregressive conditional heteroscedastic process. For this class of 
alternatives, smoothed density-based tests (e.g. Skaug and Tj0stheim (1996)) may be expected 
to perform better. 

Section 2 introduces the test statistic and derives its asymptotic normality. Section 3 
establishes consistency against all pairwise dependences and derives an optimal weighting 
scheme for various lags. In Section 4, we use simulation methods to compare the new test 
with Skaug and Tj0stheim's (1993a) test, and Skaug and Tj0stheim's (1996) density-based 
test. The proofs are briefly sketched in Appendix A; details are available from the author on 
request. 
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Pairwise Serial Independence 431 

2. The approach and test statistics 

Consider a real-valued strictly stationary time series {X,}I-,? with marginal distribution 
G(x) = P(X, < x) and pairwise distribution function Fj(x, y) = P(X, < x, X,- <, y), (x, y) E R', 
j = 0, 1, . Suppose that a random sample {X,},= of size n is observed. We are interested 
in testing the null hypothesis that {X,} is serially independent. 

Existing tests for serial independence are all based on some measure of dependence. 
Because X, and X,< are independent if and only if g(X,) and g(X,-) are independent for any 
continuous monotonic function g, it is desirable to use a measure that is invariant to g (see 
Skaug and Tj0stheim (1996) for further discussion). Hoeffding (1948) proposed the measure 

D2fj)=J {F)(u, v) - G(u) G(v) }2 dFj(u, v). (1) 

This is invariant to any order preserving transformation. By Hoeffding's (1948) theorem 3.1, 
when Fj(u, v) has continuous pairwise and marginal density functions, D2(j) = 0 if and only if 
X, and X,< are independent. In this case, tests based on measure (1) are consistent against all 
pairwise dependences. If Fj(u, v) is discontinuous, however, it is possible that D2(j) = 0 but 
X, and X,< are not independent. See Hoeffding (1948), p. 548, for an example. In this case, 
tests based on measure (1) are not consistent against all pairwise dependences. 

Measure (1) or its analogue has been used to test independence. Hoeffding (1948) used a U- 
statistic estimator for an analogue of measure (1) to test independence between two identically 
and independently distributed random variables. Blum et al. (1961) used an empirical distri- 
bution function-based estimator for an analogue of measure (1) to test independence among 
the components of an identically and independently distributed random vector. Also see 
Deheuvels (1981) and Carlstein (1988). 

For j = 0, 1, . . . define the pairwise empirical distribution function of (X,, X,<) 

Fj(x, y) = (n _])' , 1(X, < x) 1(X, < < y), 
I=j+l 

where 1(.) is the indicator function. A consistent estimator for measure (1) can be given by 

(j)= ( _ j)_ , {F(X,, X,<)-F (X,, oo) Ft(oo, X,..) }2. (2) 
1=1+1 

Skaug and Tj0stheim (1993a) were the first to use measure (2) to test for serial independence. 
They considered the test statistic 

STI a= (n - 1) Fn(j). (3) 
j=1 

When {X, }InA are independently and identically distributed, 
00 00 

ST I a E Z Aij XZJ (P) i=1 j=1 

in distribution as n -* oo, where the X (p) are independent x2 random variables with p degrees 
of freedom and the A, are weights. For continuous random variables, Aij = (ij2)-2 , and the 
test is distribution free. For discrete random variables, the Ai depend on the data-generating 
process and must be estimated; the test is not distribution free. 

Statistic (3) can be viewed as an appropriate and natural extension of Box and Pierce's 
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432 Y. Hong 

(1970) correlation test. It can detect pairwise dependences up to lag p, including those with 
zero autocorrelation. Some evidence (Skaug and Tj0stheim (1993a), p. 600) suggests that this 
pairwise approach has better power than an alternative approach that tests joint independence 
of (X,-1, . . ., X,_p). It also gives a much simpler limit distribution than the joint testing 
approach. Skaug and Tj0stheim (1993a) documented that the most significant asset of statistic 
(3) is that it is very close to correlation tests in power against linear processes and is 
considerably better than correlation tests in power against a variety of non-linear processes, 
although it has relatively low power against Engle's (1982) autoregressive conditional 
heteroscedastic process. In addition, the size of statistic (3) is quite accurate for moderate 
sample sizes compared with existing smoothed density-based tests for serial independence, 
especially when p is small. For large p, Skaug and Tj0stheim (1993a) pointed out that the 
asymptotic critical values of statistic (3) progressively lead to a test with a level that is too high 
as p increases for small n. The bootstrap and permutation methods, advocated by Skaug and 
Tj0stheim (1993b, 1996) to produce the correct levels for smoothed density-based tests, can be 
applied to statistic (3) as well. 

In this paper, we develop a distribution theory that gives a simple and reasonable approx- 
imation for statistic (3) when p is large. We show that for large p it is possible to obtain an 
N(0, 1) limit distribution for statistic (3), after proper standardization. However, for power, 
we may want to check more lags as n increases. This ensures consistency against all pairwise 
dependences for continuous random variables. In addition, different weights can be given to 
different lags. In particular, more weights can be given to more recent information, i.e. to 
lower order lags. This may improve power against stationary time series whose dependence 
decays to zero as the lag increases. These considerations suggest the statistic 

n-I 
= k k2(j/p)(n -_j) 23(j), (4) 

j=l 

where k is a kernel function satisfying the following assumption. 

Assumption 1. k: R -+ [-1, 1 ] is symmetric, continuous at 0 and all except a finite number 
of points, with k(O) = 1, Jfo k2(z) dz < oo and Ik(z)l < CIzI-b as z -* oo for some b > ^ and 
0 < C< oo. 

This assumption helps to ensure that statistic (4), after division by n, converges in probability 
to Zj??1 D2(j), thus delivering a consistent test against all pairwise dependences for continuous 
random variables. Here, the continuity of k with k(O) = 1 ensures that the bias of statistic (4) 
vanishes. The condition Jor k2(z) dz < oo implies that k(z) - 0 as z -* oo. This ensures that 
the asymptotic variance of statistic (4) vanishes. The truncated, Bartlett, Daniell, Parzen, quad- 
ratic spectral and Tukey kernels (e.g. Priestley (1981), pages 441-442) all satisfy assumption 
1. Except for the truncated kernel, all have non-uniform weights. Note that all n - 1 lags 
are used in statistic (4) if k has unbounded support. 

Statistic (4) is a weighted sum of von Mises statistics. When the truncated kernel (i.e. 
k(z) = 1(IzJ < 1)) is used, we obtain 

ST2a = L (n-]) - n( j) (5) 
j=l 

which is asymptotically equivalent to statistic (3). Thus, we can see that both statistic (3) and 
statistic (5) are based on the truncated kernel or uniform weighting. The use of n -j in 
statistic (5) is similar in spirit to Ljung and Box's (1978) modified version of Box and Pierce's 
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Pairwise Serial Independence 433 

(1970) test. Our simulation study later shows that statistic (5) has better size than statistic (3) 
for large p in small samples. 

We also consider a leave-one-out empirical distribution function 

Fj(,)(X,,X,-j)=(n-j-l)-' E (XS < X1)l(XS_ < X,<j), s=j+l ,s#t 
where the sum excludes the tth observation. This yields the alternative statistic 

n-2 

V* = S:k 2(jlp) (n -j -1)n 2(j), (6) 
j=I 

where 

b*2(j) = (n _j)_ {t](,)(X,, K,.)- F()(X,, co)FP(,)(oo, 
X_j)}2- t=j+l 

Both statistic (4) and statistic (6) have the same limit distribution, but asymptotic analysis 
shows that statistic (6) has a smaller approximation error for the limit distribution. Thus, 
statistic (6) may give better sizes in small samples, as is confirmed in our simulation study. 
Similarly, we can consider 

STlb =(n - 
l) n)2() (7) 
j=1 

ST2b = E (n -j - 1) Jn*2(j) (8) 
j=l 

These two tests have the same limit distribution as statistics (3) and (5). 
We first give our generic test statistics. 

Theorem 1. Suppose that assumption (1) holds, and p = cnV for some 0 < v < 1 and 
0 < c < oo. Define 

n-In2 
M =Zk2(J ) {(2Inj)b2(j)AO}/A 2o E k 4( 

Mb = Zk (ip) {(n--)2b*2(j) k4(i;)} 

where 

Ao = [n Om (X,){1- ) 

n n \2 

A0 = (n-2 Z VE[{min(X,, Xs)}-G(X,) (Xs)] , 
t=l s=1 

with 

(u) = n-1 E 1(X, < u). 
t=1 
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434 Y. Hong 

If {X,}'I are identically and independently distributed, then Ma - Mb -* 0 in probability, 
and Ma -* N(O, 1) and Mb -* N(O, 1) in distribution. 

Theorem 1 applies to discrete, continuous or mixed distributions. If G(x) is known to be 
continuous, we can use the following simplified statistics. 

Theorem 2. Suppose that the conditions of theorem 1 hold. Define 

Ma = 90 E k2Q) {(nD-j)J 3(j) l}/{2 2 k4(J ) }1/ 

Mb= 90Z k2 (J){(n _j - 1) f)*2( j) _ /2 , k j 

If {X,}', are identically and independently distributed continuous random variables, then 
Ma - Mb -* 0 in probability, and Ma -* N(0, 1) and Mb -* N(0, 1) in distribution. 

We note that theorem 2 does not apply to discrete distributions, because the mean and 
asymptotic variance of (n -j) DnL ) cannot be computed in discrete cases. 

Although the von Mises statistic (n -j) Dn( j) does not follow an asymptotic x2-distribution, 
theorems 1 and 2 show that a weighted sum of (n _j) i52 (j) has an asymptotic N(0, 1) distri- 
bution for large p after centring and scaling. To obtain an intuitive idea, consider for example 
the use of the truncated kernel. In this case, Ma of theorem 2 becomes 

Ma = E {(n-_j) 2l(j)-3 }/ 2 ) 

As shown in Skaug and Tj0stheim (1993a), 

(n-j) 12(j) E E (kir)2(lr)2 X21(1) 
k=1 1=1 

in distribution as n -* oo, thus having mean 1/36 and asymptotic variance 2/902. In addi- 
tion, cov{(n - i) 12(i), (n -_j) J2(j)} -_ 0 for i 7'-j as n -* oo, suggesting that (n - i)13)(i) 
and (n -j) I5 (j) are asymptotically uncorrelated or independent. Therefore, { (n -j) 32 (]j), 
j = 1, . . ., p} can be viewed as an asymptotically identically and independently distributed 
sequence with mean 1/36 and variance 2/902. The sum of this sequence, after differencing the 
mean and dividing by the standard deviation, will converge to N(0, 1) in distribution as p 
becomes large. Our proof, of course, does not depend on this simplistic intuition. Instead, we 
develop a dependent degenerate V-statistic projection theory to approximate statistic (4) as a 
weighted sum of degenerate V-statistics over lags, which, after standardization, is then shown 
to be asymptotically N(0, 1) by using an appropriate martingale limit theorem (e.g. Brown 
(1971)). See Appendix A for more details. For degenerate V-statistics (or related U-statistics) 
of dependent processes, see (for example) Carlstein (1988) and Sen (1963). 

The N(0, 1) approximation is convenient for inference. For small n or small p, however, it may 
not be accurate. As a practical alternative, the bootstrap or permutation, as advocated in Skaug 
and Tj0stheim (1993b, 1996), can be used as a remedy for obtaining the right level. Indeed, the 
current test situation is ideally suited to these resampling methods, which can be expected to 
yield as good a level as the best asymptotic approximation. In particular, permutation gives the 
exact level. However, it is impossible to compute the level exactly in practice for all except very 
small sample sizes. Hence, Monte Carlo methods must be used to obtain an approximation. 
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Pairwise Serial Independence 435 

3. Consistency 

To state our consistency theorem, we impose some additional regularity conditions. 

Assumption 2. 
00 J z12 k2(z) dz < oo. 
0 

Assumption 3. Put U, = G(X,), where G is the continuous marginal distribution of the 
strictly stationary mixing process {X,} with strong mixing coefficient a(j) = 0(yj--6) as 
j -* oo for some 6 > 0. The joint distribution of (U,, U,1) has a continuous joint density 
function on [0, 1]2 that is bounded by some A < oo, where A does not depend on j. 

Theorem 3. Suppose that assumptions 1-3 hold, and p = cnV for some 0 < v < 3 and 
0 < c < oo. Let Ma and Mb be defined as in theorem 2. Then, with probability approaching 1 
as n -+ oo, 

pl2nMD(j)/{2J k4(z)z 
00 /fg 00 1/2 

(P'/2 /n)Mb 90 E D2(j) 2 k4(z) dz) 

Theorem 3 implies that limn,o{P(Ma > C,G) = I for any non-stochastic sequence {Cn= 
o(n/pl/2)1, thus ensuring consistency of Ma against all pairwise dependences for continuous 
random variables. It suggests that when more data become available the tests Ma and Mb 
have power against an increasingly larger class of alternatives. Thus, Ma and Mb are useful 
when we have no prior information about possible alternatives. Because negative values of 
Ma and Mb can occur only under the null hypothesis asymptotically, Ma and Mb are one- 
sided tests; appropriate upper-tailed critical values of N(0, 1) should be used. 

Although the temporal condition on a(j) is mild, it rules out strong dependences. How- 
ever, it is reasonable that any independence test should be expected to have strong power 
against strong dependences. In particular, Ma and Mb may be expected to have good power 
against strong dependences because a long lag is used. We shall investigate the power of Ma 
and Mb against long memory processes via simulation. It should also be noted that theorem 3 
holds only for continuous random variables. For discrete random variables, Ma and Mb are 
not consistent against all pairwise dependences, because D2(j) can be 0 even if the time series 
is not pairwise independent. Furthermore, like other asymptotic notions, consistency against 
all pairwise dependences seems to be mostly of theoretical interest. In practice, p is always 
finite given any sample size n. When a kernel with bounded support (i.e. k(z) = 0 if lzl > 1) is 
used, p is the lag truncation number, and only the first p lags are tested. When a kernel with 
unbounded support is used, p is not a lag truncation number. In this case, all n - 1 lags are 
used, but the contributions from lags much larger than p are negligible. 

An important issue is the choice of k. Intuitively, for stationary time series whose dependence 
as measured by statistic (1) decays to zero as the lag increases, it seems more efficient to give 
more weights to lower order lags. The asymptotic analysis below shows that this is indeed the 
case. To compare the asymptotic relative efficiency between two kernels, say k, and k2, we use 
Bahadur's (1960) asymptotic slope criterion, which is suitable for large sample tests under fixed 
alternatives. Bahadur's asymptotic slope is the rate at which the asymptotic p-value of the test 
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statistic goes to 0 as n -* oo. Because Ma is asymptotically N(0, 1) under the null hypothesis, its 
asymptotic p-value is 1 - '1(Ma), where 1 is the cumulative distribution function of N(0, 1). 
Define 

SA(k) = -21n{1 - (M,) 

Given ln{1 -? _(z)} =I -Iz2{1 + o(1)} as z -* oo, we have by theorem 3 that 

(p/n2) Sn(k) -* 902{ D2(j)} /{2 J k4(z) dz} 

in probability. Following Bahadur (1960), we call 902{ 5j?? D2(j)}2/2 Jo k4(z) dz the asymp- 
totic slope of Ma. Under the conditions of theorem 3, it is straightforward to show that 
Bahadur's asymptotic relative efficiency of k2 to k, is 

00 00 o 1 /(2-v) 

ARE(k2 :kl) = { k14(z) dz/ k2(z) dz} 
Thus, k2 is more efficient than k, if 

J k4(z)dz < J 4(Z)dz 2 
o 

For example, Bahadur's asymptotic efficiency of the Bartlett kernel (kB(z) = (1-IZI) (IzI <, 1)) 
to the truncated kernel (kT(z) = (IzOI < 1)) is ARE(kB :kT) = 511(2-v) > 2.23. Following reason- 
ing that is analogous to Hong's (1996a, b) local power analysis for some correlation tests, we can 
obtain that the Daniell kernel 

k(z) = sin(rzV/3) ZElR (9) 
rz /3 

maximizes the Bahadur asymptotic slope over the class of kernels 

K(r) = {k satisfies assumptions 1, 2, k(2) = r2/2 > 0, K(A) > 0 for A E R}, (10) 

where 

k(r) = lim [{I - k(z)}/ IZIr] 

is called the 'characteristic exponent' of function k and 

K(A) = (2r)-' J k(z) exp(-iAz) dz 

is the Fourier transform of k. This class includes the Daniell, Parzen and quadratic spectral 
kernels but rules out the truncated (r = oo) and Bartlett (r = 1) kernels. Mainly because of 
assumption 2, K(r) is more restrictive than a class of kernels often considered to derive 
optimal kernels using appropriate criteria (see Andrews (1991) and Priestley (1962)) in the 
spectral analysis literature. Hong (1996a, b) showed that the Daniell kernel (9) maximizes the 
local power of some correlation tests over a class of kernels slightly more general than K(T). 
The result obtained here suggests that the optimality of the Daniell kernel (9) carries over to 
the non-linear Hoeffding measure (1). However, the optimality of the Daniell kernel (9) seems 
to be only of theoretical interest. Simulation studies later show that commonly used non- 
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uniform kernels have similar powers for Ma and Mb, but they are all more powerful than the 
truncated kernel in most cases. 

One advantage of Skaug and Tj0stheim's (1993a) test is that it does not require choosing 
any kernel function and p as a function of n. For Ma and Mb, p behaves like a smoothing 
parameter as we require p -+ oo as n -+oo to ensure asymptotic null normality and con- 
sistency against all pairwise dependences. Of course, Ma and Mb are different from smoothed 
density-based tests because Ma and Mb do not require smoothed nonparametric estimation for 
each lag. To test all pairwise dependences, a smoothed density-based test would also need to 
let p -> oo as n -+ oo, in addition to the original smoothing parameter for density estimation. 
In the present context, the optimal p for Ma and Mb depends on the alternative dependence 
structure. Skaug and Tj0stheim (1993a) noted that choosing p too large will decrease the 
power of statistic (3). The same is true of Ma and Mb as well in general. Skaug and Tj0stheim 
(1993a) recommended choosing p larger than the smallest significant lag included in the model. 
It is reasonable to use a 'rule of thumb' consisting of taking p equal to the largest significant 
lag included in the model. Of course, this rule may not make sense for certain alternatives 
such as strongly dependent processes. We investigate the effect of the choice of p on both size 
and power via simulation. Our simulation finds that this rule of thumb applies well to the 
truncated kernel, but for non-uniform kernels maximal power is often achieved for p larger 
than the largest significant lag included in the model. In addition, the use of the non-uniform 
kernel alleviates the loss from choosing p too large because the kernel discounts the loss of 
degrees of freedom for higher order lags; this makes the power less sensitive to the choice of p. 
Nevertheless, the issue of choosing an optimal p is important. We defer this complicated issue 
to other work. 

4. Monte Carlo evidence 

We now study finite sample performances of the tests proposed. In addition to an identically 
and independently distributed process, we also consider following alternatives: AR(l), 

X, = 0.2X,_1 +,El; 

ARFIMA(0, d, 0), 

X, =(1-L) 026,, LX, =X,; 

ARCH(l), 

X, = ,(l ?0 5X2 )1/2; 

GARCH(1, 1), 

X, = c,h1/2, h, = 1 +O.1X,2_ + 0.8h,l1; 

TAR(l), 

(-0.5X,_ + c, if X,1 > 1, 
X, = 

0.4X,t1 +c,, if X,_1 < 1; 

NMA, 

X, = 0.8,1E,-2 + El; 
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NAR(3) 

X, = 0.25X,2 - 0.4E,_1X,I + 0.2ct-2Xt-2 + 0.5Eu.3X,_3 + E,; 

NAR(5) 

XI = O.3(ct,1Xt-1 -Et -2 + c,.3X,3 -c,4X,.4 -c,_5X,.5) + l,; 

EXP(3) 

3 
X,=0.2 Z X1j exp(- IX2 )+E,; 

i=l 

EXP(1 0), 

10 
X,= 0.8 E X,< exp(- -X2 ) + ,. 

j=, 

Here, AR(1) is a first-order autoregressive process, ARFIMA(0, d, 0) is a fractionally dif- 
ferenced integrated process, a popular long memory model (see Robinson (199 ib, 1994)), 
ARCH(1) is a first-order autoregressive conditional heteroscedastic process, GARCH(1, 1) is 
a generalized ARCH process of order (1, 1), TAR(1) is a first-order threshold autoregressive 
process, NMA is a non-linear moving average process, NAR(3) and NAR(5) are non- 
linear autoregressive processes of orders 3 and 5 respectively, and EXP(3) and EXP(10) are 
non-linear exponential autoregressive processes of orders 3 and 10 respectively. These models 
are a fairly representative selection of both linear and non-linear time series. Except for the 
ARFIMA(0, d, 0) process, all have been used in a variety of existing simulation studies for 
independence tests. We consider two types of c,: normal and log-normal with zero mean and 
unit variance, for n = 100 and n = 200. The process ARFIMA(0, d, 0) is generated using 
Davies and Harte's (1987) fast Fourier transform algorithm. Except for the ARFIMA(0, d, 0) 
process, we generated n + 100 observations for each n and then discarded the first 100 to re- 
duce the effect of initial values. For the ARFIMA(O, d, 0) process, we generated n + 156 
= 28 observations and discarded the first 156 for n = 100, and generated n + 312 = 29 observa- 
tions and discarded the first 312 for n = 200. The simulation experiments were conducted 
using the GAUSS 386 random number generator on a Cyrix personal computer. 

To examine effects of various weights on the tests proposed, we considered five kernels: the 
truncated, Bartlett, Daniell, Parzen and quadratic spectral kernels. The last three kernels 
belong to the class K(er/V/3) in expression (10). To investigate the effect of choosing different 
values of p, we considered p from 1 to 20; this covers a sufficiently large range of p given 
n = 100 and n = 200. We also studied Skaug and Tj0stheim's (1993a) test STia and its 
variants STib, ST2a and ST2b, as well as Skaug and Tj0stheim's (1996) smoothed density- 
based test 

p 
J= J,i(), 

i=l 

where 
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Fig. 1. Size under the normal process: (a) empirical size at the 10% level; (b) bootstrap size at the 10% level; (c) 
empirical size at the 5% level; (d) bootstrap size at the 5% level 

ii 
f,1Qj) = (n - })- S {Jj(1)(X1, X,..1) -J,()(X,)A,.. J)(X,..J)}, 

t=j+l~~~~~~~t fJ(,)(X,, X,..) = {(n -j)hn}-l E K{X- X)/h,1} K{ (X,..1-X)/,} 
s=j+I s$I 

f(l)( = { (n - I)hn } E K{ (X,-Xs)/hn } 
s=I,sot 

with K: R -R+ a kernel function and hn a bandwidth. Here, 'leave-one-out' bivariate and 
marginal density estimators are used. As in Skaug and Tj0stheim (1996), we first standardized 
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Fig. 2. Power at the 5% level under AR(1) and ARFIMA(O, d, 0) processes: (a) size-corrected power, AR(1), 

normal error; (b) bootstrap power, AR(1), normal error; (c) size-corrected power, AR(1), log-normal error; (d) 

bootstrap power, AR(1), log-normal error; (e) size-corrected power, ARFIMA(O, d, 0), normal error; (f) boot- 

strap power, ARFIMA(O, d, 0), normal error; (g) size-corrected power, ARFIMA(O, d, 0), log-normal error; (h) 

bootstrap power, ARFIMA(O, d, 0), log-normal error 

the data by the sample deviation and used h = n-116 with the Gaussian kernel. This test has 
been proven to be more powerful than or comparable with many existing smoothed density- 
based tests against a variety of non-linear processes (see Skaug and Tj0stheim (1993a, b, 
1996)). Under independence, (n/p)l12J -+ N(O, 42) in distribution as n -+ oo for some a 2 

In addition to asymptotic inference, we also used a bootstrap procedure for all the tests to 
study bootstrap size and power. To describe the procedure, we first consider Ma. Given a 
sample {X,},n1, we generate m bootstrap samples {X*jL'1, 1 = 1, . . ., m. For each bootstrap 
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Fig. 2. (continued) 

sample {X*/},1, we compute a bootstrap statistic Mt*. To estimate the distribution function of the 
bootstrap statistic M* we could use the empirical distribution function of {MII}I I if m is a a 

sufficiently large. Because our simulation experiment is rather extensive, we choose m = 50. For 
such a small m, we follow Hjellvik and Tj0stheim (1996), section 3.3, to estimate the bootstrap 
distribution function F*(z) = P(M* < z) by a smoothed nonparametric kernel estimator 

rsni 
ft(z) = J [rn-i jE {h,n,\/(2ir)F-' exp {-(y - M* )2/2h, dy 

FW=-00 /= 
m 

1/1hl 

In 
= M-1 E (D{ (z -M*)Ih 

l=l 
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(c) (d) 
Fig. 3. Power at the 5% level under ARCH(1) and GARCH(1, 1) processes: (a) size-corrected power, ARCH(1), 
normal error; (b) bootstrap power, ARCH(1), normal error; (c) size-corrected power, ARCH(1), log-normal error; 
(d) bootstrap power, ARCH(1), log-normal error; (e) size-corrected power, GARCH(1, 1), normal error; (f) 
bootstrap power, GARCH(1, 1), normal error; (g) size-corrected power, GARCH(1, 1), log-normal error; (h) boot- 
strap power, GARCH(1, 1), log-normal error 

where '1 is the cumulative distribution function of N(O, 1), h,,, = Sn,,m"5 is the bandwidth 
and S,A, is the sample standard deviation of {Ma*!}72= For more details, see Hjellvik and 
Tj0stheim (1996). Having obtained Pn, we can reject the null hypothesis of independence if 
F*t(Ma) > 1 - a, where ao is the significance level and Ma is the test statistic based on the 
original series {XJ,},1. The same procedure is applied to the other tests. 

We first consider sizes by using both asymptotic and bootstrap critical values. For STia, 
STIb, ST2a and ST2b, we tabulate their asymptotic critical values using 10000 simulations of 
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Fig. 3. (continued) 

200 200 

E 
- 

E 1)-I X2J(P)' 
i=l j~=] 

a truncated version of the limit distribution of STia. For the J-test, we only study its boot- 
strap size. Sizes for asymptotic and bootstrap critical values are based on 5000 and 1000 
replications respectively. Fig. I reports sizes of Ma, Mb, STI a, ST Ib, ST2a, ST2b and the J-test 
under the null hypothesis of independence at the 10% and 5 % levels, for n = 100 and normal 
innovations. We only report the Daniell and truncated kernels for Ma and Mb, because the 
four non-uniform kernels perform similarly. We have the following observations. 

(a) In terms of asymptotic critical values, Ma and Mb have reasonable sizes, although they 
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error; (g) size-corrected power, NMA, log-normal error; (h) bootstrap power, NMA, log-normal error 

show slight overrejections at the 5%/ level. Both the Daniell and the truncated kernels 
have similar sizes. Sizes are robust to the choice of p. The leave-one-out version Mb has 

slightly better sizes than Ma has, suggesting some gain from using the leave-one-out 
statistics. The tests STi a' ST2a, STi b and ST2b have precise sizes for small p. For large 

p, STi a and STi b tend to give some overrejection, but the modified statistics ST2a and 
ST2b continue to have good sizes. The leave-one-out version ST2b has slightly better 

sizes than ST2a. 
(b) All the tests have good bootstrap sizes. In particular, bootstrap sizes are better than 
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Fig. 4. (continued) 

those given by the asymptotic approximation at the 5% level for all the tests. 

We also consider sizes at the 1% level. At this level, the asymptotic approximation gives 
overrejections to various degrees for all the tests in most cases. The bootstrap sizes are 
significantly better and reasonable, with the J-test having the best size under normal innova- 
tions. The tests based on the empirical distribution function have invariant sizes at all the 
three levels under both normal and log-normal innovations. For n = 200, we studied sizes 
only using asymptotic critical values. The sizes are improved for all the tests, especially for 
STIa and ST2a. 

Figs 2-6 report power at the 5% level for n = 100. To compare the tests on an equal basis, 
we use empirical critical values simulated from 5000 replications under the null hypothesis of 
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independence. We also consider power by using bootstrap critical values. Powers by using 
empirical and bootstrap critical values are based on 500 and 200 replications respectively. 
Powers at the 10% and 1 a levels were also studied, and similar ranking patterns were found. 
Both Ma and Mb have similar powers. Also, STia and ST2a have power similar to STib and 
ST2b respectively. For clarity, we only report results for M STi ST2 and the J-test. 
Again, only the Daniell and the truncated kernels for Ma are reported, because the four non- 
uniform kernels have similar powers. (In some cases, the Bartlett kernel is slightly more 
powerful than the other three non-uniform kernels, but this is not inconsistent with the 
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Fig. 5. (continued) 

optimality of the Daniell kernel because the Bartlett kernel is outside the class of kernels over 
which the Daniell kernel is optimal.) We can make the following observations. 

(a) For Ma, the Daniell kernel is more powerful than or comparable with the truncated 
kernel in most cases, suggesting the gains from using non-uniform weighting. For the 
alternatives NAR(3), NAR(5), EXP(3) and EXP(10), the truncated kernel is more 
powerful than or comparable with the Daniell kernel for small p, but as p becomes 
large the Daniell kernel becomes dominant. The tests STIa and ST2a have roughly the 
same power as the truncated kernel-based Ma-test. (The truncated kernel-based Ma- 
test and ST2a have identical power because there is an exact relationship between 
them.) 
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Fig. 6. Power at the 5% level under EXP(3) and EXP(10) processes: (a) size-corrected power, EXP(3), normal 
error; (b) bootstrap power, EXP(3), normal error; (c) size-corrected power, EXP(3), log-normal error; (d) bootstrap 
power, EXP(3), log-normal error; (e) size-corrected power, EXP(10), normal error; (f) bootstrap power, EXP(10), 
normal error; (g) size-corrected power, EXP(1 0), log-normal error; (h) bootstrap power, EXP(1 0), log-normal error 

(b) For the alternatives AR(1), TAR(1), NAR(3), NAR(5), EXP(3) and EXP(10), STia, 
ST2a and the truncated kernel-based Ma-test achieve maximal powers when p is equal 
to the largest significant lag included in the model. This is consistent with the findings 
of Skaug and Tj0stheim (1993a). For the ARFIMA(O, d, 0) process, STia, ST2a and 
the truncated kernel-based Ma-test achieve maximal powers at p = 1 under normal 
innovations, but their powers grow with p under log-normal innovations. In contrast, 
the Daniell kernel generally achieves the maximal power when p is larger than the 
largest significant lag. This is true even for the AR(1) process. A possible reason is that 
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Fig. 6. (continued) 

D2(j) may not vanish when j is larger than the largest significant lag, although its 
magnitude may be smaller. Thus, to include some extra terms beyond the largest 
significant lag may enhance the power if D2(j) is sufficiently large to offset the loss of 
additional degrees of freedom. For the ARFIMA(O, d, 0) process, the Daniell kernel 
has the maximal power when p = 3 under normal innovations, and its power also 
grows with p under log-normal innovations. Note that the Daniell kernel often makes 
power less sensitive to the choice of p, because it discounts higher order lags, which 
usually contribute less in power. 

(c) None of the tests uniformly dominates the others against all the alternatives under 
study. The J-test is more powerful against ARCH(1), GARCH(1) and NMA processes 
with normal innovations, whereas the tests based on the empirical distribution function 
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are more powerful than the J-test against the AR(1), ARFIMA(O, d, 0), TAR(l), 
EXP(3) and EXP(10) processes. For NAR(3), NAR(5) and NMA with log-normal 
innovations, the J-test is more powerful when p is small, whereas the tests based on the 
empirical distribution function are more powerful for large p. It seems that the tests 
based on the empirical distribution function are more powerful against the alternatives 
whose dependences are mostly captured by the conditional mean, whereas the J-test is 
more powerful against the alternatives whose dependences are mostly captured by the 
conditional second moments. Almost all the tests have better size-corrected powers 
under log-normal innovations than under normal innovations; only the J-test has 
better powers against the ARFIMA(O, d, 0) and ARCH(1) processes under normal 
innovations than under log-normal innovations. 

(d) The bootstrap powers for all the tests are similar to those using empirical critical values 
under normal innovations. In this case, the loss of power due to bootstrapping is small. 
For log-normal innovations, however, the bootstrap powers are substantially smaller 
than the size-corrected powers in quite a few cases. An exception is the J-test against 
the ARFIMA(O, d, 0) process, whose bootstrap power is much better than its size- 
corrected power. 

For n = 200, only size-corrected powers were considered. All the tests have better powers 
against all the alternatives to various degrees, but the relative rankings remain unchanged. The 
tests based on the empirical distribution function still have relatively low powers against the 
ARCH(1), GARCH(1, 1) and NMA processes. However, this does not mean that they should 
not be used to detect such alternatives. If interest indeed is in detecting these alternatives, it is 
sensible to apply the tests based on the empirical distribution function to the square of the 
original series. This can be expected to yield good power against ARCH-type alternatives. 
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Appendix A 

We sketch the proof of theorems 1-3 here. Throughout, 0 < A < oo denotes a generic finite constant 
that may differ in different places. 

A. 1. Proof of theorem 1 
We prove for Ma only; the proof for Mb is similar. The proof of theorem 1 is based on propositions 1-5 
stated below. The proofs of these propositions are available from the author on request. 

Proposition 1 shows that the weighted sum of von Mises statistics V, in equation (4) can be approx- 
imated by a weighted sum of third-order V-statistics related to various lags. 

Proposition 1. Put h(x, y) = I (x < y) - G(y). For 0 < j < n, define 

fI(j) = (n -])' E Af](XI, XIj), 
I=j+l 

where 
n 

11j(x, y) = (n -])' E h(X,, x) h(X,1, y). 
t=j+l 
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Then 
n-I n-I 
Z k2(j/p)(n -j) DJ2(j) = ?, k2(j/p)(n -j) fIt(i) + Op(p/n'12). 
j=l j=lI 

The next result is a projection theory for dependent degenerate V-statistics. 

Proposition 2. For 0 < j < n, define 

fi2(j) = ftj2(x, y) dG(x) dG(y), 

where fIn(j)(x, y) is defined in proposition 1. Then 
n-I n-I 
E k2(j/p)(n -j) fI2(j) = E k2(j/p)(n -j) FI2(j) + Op(pln' 2). 

To state subsequent results, put 

A,,(j) = J h(X,, x) h(Xs, x) h(X,1, y) h(X51, y) dG(x) dG(y). 

Note that A,s(j) = As,(j). In addition, E{A,s(j)[F,_} = 0 almost surely for all t > s and allj > 0, where 
and hereafter {F,} is the sequence of a-fields consisting of {X,, -r < t}. We can now write 

n-1 jp n-1 jp n n-2 2jl n 1-1 
Zk2(]/p)(n _j)f2(j)= Zk2(/p)(n -j)-< E A1(j) +2 k2(ip)(n-j)1 As(j) 
j=l j=l I=j+1 I t=j+I s=j+l 

=An + 4n, say. 

Proposition 3 shows thatAui can be approximated by a non-stochastic term. 

Proposition 3. LetA^n be defined as above, and define 

AO = [J G(x) { 1-G(x) } dG(x)1 

Then 
n-I 

An k(j/p) =-AOE j=l 

The statistic 4n is a weighted sum of degenerate second-order U-statistics with mean 0. By re- 
arranging the summation indices, we can write 

n f -1 s-1 

Bn = Z { -2k (n _j) AI, (j) 
1=3 tvs=2 j=1 I 

Because E{A,s(j) JF,_ I} = 0 for all t > s and all j > 0, An is a sum of a martingale difference sequence. 
By applying Brown's (1971) martingale limit theorem, we can show that a properly standardized version 
of Bn converges in distribution to N(O, 1), as stated below. 

Proposition 4. Define 

Bo = (|[G {min(x, y)} - G(x) G(y)]2 dG(x) dG(y)) 
Then 

n-2 ~~~1/2 
{2Bo k4 (j/p)} 4n N(O, 1). 

Both Ao and Bo must be estimated if we do not know whether G(x) is continuous or discrete. The 
following result shows thatAo and Bo defined in theorem 1 are consistent for Ao and Bo. 

Proposition 5. Let AO and Bo be defined as in theorem 1. Then 
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AO- AO = Op(n 1/2), 

ho - Bo = op(l) 

Now, combining propositions 1-3 yields 

n-I n-I 

E k2(j/p)(n -j) DJn(j) = Ao E k2(j/p) + Bn + Op(p/n'12) 
j=l j=1 

n-I 

=Ao E k2(j/p) + B? + Op(p/n'12), 
j=l 

where the second equality follows from proposition 5 and p -+ oo. It follows that 

2Bo k4(E j }] /p) {(n-j) Dn(j)-Ao) = 2Bo k4( /p)} n + Op(p2/nl2 N(O ) 
j=1 1=1-I = 

by proposition 4 and p = cn' for 0 < v < 1, where we have also made use of the fact that 
n-2 00 

?. k4( j/p) = p k4(z) dz {I1 + o(l)}. 
j=l o 

By replacing Bo by A0, we have 
d 

Ma -* N(O, 1) 

by Slutsky's theorem and ho -B = op(l). This completes the proof for Ma. D 

A.2. Proof of theorem 2 
For a continuous distribution G, G(X,) is uniformly distributed on (0, 1). This fact suggests that we can 
compute Ao and Bo directly: 

Ao={ u(l-u) du}= 

and 

Bo= [J J{min(ul,u2)-uiu2}2du2duu, =9d. 

Hence, we need not useAO and Bo. The desired result follows immediately. O 

A.3. Proof of theorem 3 
The consistency of Ma follows from the fact that 

E kr(j/p) = p f kr(z)dz{I + o(l)} 
j=l I 

for r > 2, p = cn' for 0 < v < 3, and two propositions stated below. The proofs of these propositions are 
available from the author on request. 

Proposition 6. Put Dj(x, y) = Fj(x, y) - G(x) G(y). Define 

D2( j) =n_ j)_, 2 Dj(XI, XIs) 
1=j+l 

Then 
n-I n-I 

n-I Ek2(j/p)(n _j)J25(j) = n- Ek2(j/p)(n _j) D2(j) + op(l). 
j=I j=1 
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Proposition 7. Let D2(j) be defined as in equation (1) and D2(j) be defined as in proposition 6. Then 

-I E k2(j/p) (n _j) D2(j) = E D2(j) + op(l). 
j=l j=l 
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